144 198 315 432
 
 

Tobit analysis

     
 

Monitoring microbiological behaviors in water is crucial to manage public health risk from waterborne pathogens, although quantifying the concentrations of microbiological organisms in water is still challenging because concentrations of many pathogens in water samples may often be below the quantification limit, producing censoring data. To enable statistical analysis based on quantitative values, the true values of non-detected measurements are required to be estimated with high precision. Tobit model is a well-known linear regression model for analyzing censored data. One drawback of the Tobit model is that only the target variable is allowed to be censored. In this study, we devised a novel extension of the classical Tobit model, called the multi-target Tobit model, to handle multiple censored variables simultaneously by introducing multiple target variables. For fitting the new model, a numerical stable optimization algorithm was developed based on elaborate theories. Experiments conducted using several real-world water quality datasets provided an evidence that estimating multiple columns jointly gains a great advantage over estimating them separately.

 
     
     
  References  
  HongYuan Cao(修士2年) and Tsuyoshi Kato, Asymmetric Tobit analysis for correlation estimation from censored data, IEICE Transactions on Information & Systems, Vol.E104-D,No.10,pp.-,Oct. 2021.DOI: 10.1587/transinf.2021EDP7022  
  Yuya Takada(修士1年), Daisuke Sano, Syun-suke Kadoya, Tsuyoshi Kato, Multi-Target Tobit Models for Completing Water Quality Data, IPSJ Transactions on Mathematical Modeling and its Applications (TOM), accepted.  
     
     
 
[English]
 
学生の活躍
 
CNN初期化
トビット解析
符号制約学習
Top-k SVM
ウイルス検出
共分散記述子
マハラノビス符号化
顕微鏡画像解析
平均多項式カーネル
打ち切りデータのベイズ推定
計量学習
ファジー部分空間クラスタリング
リガンド予測
酵素活性部位探索
伝達学習によるリンク予測
多タスク学習
ラベル伝播法
マイクロアレイ用カーネル
薬剤耐性予測
ネットワーク推定
カーネル推定
変分剛体変換
その他